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Abstract. The development of the circular economy has attracted sig-
nificant research interest in recent years. The present work explores the
use of HyperSpectral Imaging (HSI) sensors and Machine Learning (ML)
techniques for the categorization of recyclable plastics in challenging in-
dustrial conditions. Specifically, we present the pipeline for the pre- and
post- processing of the spectral signals and we compare four well-known
classifiers in categorizing plastics into seven material types, according to
the international standards of the circular economy and material recy-
cling in particular. The obtained results show that hyperspectral technol-
ogy can contribute to the successful categorization of plastics in industrial
conditions.
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1 Introduction

Waste management is a significant global issue which we hope to successfully
address by following the circular economy model. Essentially, the recycling of
materials is where the loop is closed for circular waste management. The sorting
of post-consumer waste in different material types is a complicated and expensive
task that, to date, has been mostly done manually. However, in recent years there
have been several activities focused on automating the treatment of recyclables
for material recovery, which leverage recent advances in artificial intelligence and
robotics [1,7,9,10].

Interestingly, the classification of recyclables into different material types can
be significantly enhanced by HyperSpectral Imaging (HSI) sensors that collect a
whole spectrum at each individual pixel of an image [4, 8]. Hyperspectral cam-
eras have the ability to collect data outside the human "visible spectrum" which
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greatly enhances our observation capacity. Especially, when it comes to the clas-
sification of recyclables, HSI enables the direct identification of the material from
which each package is made.

While very different recyclable materials, for example paper and aluminum,
have distinct “spectral signatures” (i.e. the variation of reflectance of a mate-
rial with respect to wavelengths) which facilitates sorting. However, when we
turn to plastics, things are much more complicated [3], because plastics share
common material characteristics which makes their spectral signatures similar,
and thus the distinction between them is very challenging. Nevertheless, re-
cycling applications assume the classification of plastics into 7 sub-categories
namely Polyethylene Terephthalate (PET), High Density Polyethylene (HDPE),
Polyvinyl Chloride (PVC), Low Density Polyethylene (LDPE), Polypropylene
(PP), Polystyrene (PS), and Others.

Recent works have investigated the combined use of hyperspectral imaging
and Artificial Intelligence to categorize plastics in controlled laboratory envi-
ronments [3, 4, 8]. The present study explores the applicability of hyperspectral
imaging in a real material recovery facility which can be largely affected by
weather conditions and humidity, while at the same time, plastic recyclables suf-
fer from uncontrolled dirt. In particular, we compare four well-known supervised
classification algorithms in identifying and classifying plastics in waste streams.
The obtained results verify the applicability and the potential of hyperspectral
imaging for sorting recyclable plastics in real world industrial applications. From
a methodological perspective the current work highlights the importance of pre-
and post- processing steps that are essential to reveal the value of spectral data
and make them useful in for industrial applications.

By moving hyperspectral imaging to the particularly challenging domain of
recyclable categorization the present work aims to provide valuable guidelines
that facilitate the wider use of hyperspectral imaging in a range of different
industrial applications.

2 Experimental Setup

A key objective of the present study is the development of a hyperspectral imag-
ing approach for plastics classification, which would be applicable in real material
recovery facilities. To meet this requirement, we exploit the industrial research
setup that is available at the Heraklion MRF on the island of Crete, Greece.
This setup is open on two opposite sides and therefore 24/7 connected to the
open space, which means our approach has to deal with significant fluctuations
in air-humidity and dirt, which is known that both affect hyperspectral imaging.
The experimental configuration used in the present study consists of three
main parts (see Figure 1). The first is the hyperspectral camera and the illumi-
nation unit, as the sensing part of the equipment. The second is the conveyor
belt, that carries recyclable materials for sorting (the current work focuses on
plastics). The last part is the computer that actually processes the acquired
hyperspectral data to classify the observed objects in different material types.



Hyperspectral Classification of Recyclable Plastics in Industrial Setups 3

The hyperspectral imaging camera is a Specim FX17e which has been in-
stalled 1.2 meters above the conveyor belt. The camera is in fact a line scanner
that scans vertically to the flow of the belt. An industrial 80cm wide conveyor
belt is used to transfer recyclables at a constant speed, which in our case is set
to 35cm/sec. The illumination unit consists of 4 x 500 Watt Quartz, 8550 Lu-
mens halogen lamps that are positioned 40cm above the conveyor belt with 45°
inclination, so that the acquired data is minimally affected by the variations of
ambient light. We use an industrial fanless PC that can safely operate in humid
and dirty environments. The processing of the hyperspectral data is summarized
below.

Industrial
Processing Unit

Specim FX17e
Hyperspectral
Camera

4 X 500Watt
Halogen Lamps

Fig. 1: Overview of the experimental setup

3 Hyperspectral Processing Pipeline

Given that the implemented system is applied in industrial conditions, it is
crucial to enhance its robustness against potential variations in the operating
environment, such as ambient lighting, air humidity, dust/dirt and other pa-
rameters that cannot be fully controlled. Similar to previous works [6], we have
implemented a pipeline for processing hyperspectral images that consists of seven
steps, as illustrated in Figure 2. The implementation of the relevant modules is
summarised in the following sections.

3.1 Image Acquisition

We use a hyperspectral line scanner that captures 640 pixels per line. Each
pixel consists of 224 spectral bands with a 12 bit representation, which spans
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Fig. 2: HSI Pipeline

between 900-1700 nm. Therefore, in analogy to standard RGB cameras where
each pixel is represented by 3 values, in the hyperspectral camera case each pixel
is represented by 224 values.

The camera’s frame rate and exposure time have been experimentally set to
190 fps and 4ms respectively, following a trial and error procedure which aimed
to minimize the visually observed noise in the collected data.

During operation, line scans are processed in batches. Typically, we capture
1000 lines to construct a hyperspectral cube consisting of (1000 lines) x (640
pixels) x (224 bands), that is used for material detection, localization and cate-
gorization. Early visualization of the recorded data can be achieved by following
a pseudo-coloring approach that uses 3 bands (out of the 224 recorded) to con-
struct and visualise an ordinary RGB image, as shown in Figure 3.

3.2 Radiometric Calibration

After the acquisition of raw image data, radiometric calibration is essential to
ensure the accuracy and repeatability of the data provided by the hyperspectral
camera. Relative radiometric calibration is adopted in the present work which
means that the output of the sensor is normalized in relation to a reference frame
so that a uniform response is obtained for the subsequent frames [5]. Typically,
the performance of a hyperspectral camera is characterized by the white and
dark frames it captures. These two frames are used as references in radiometric
calibration, to enhance the integrity and validity of the obtained data [14], [13].

To record the white reference frame, we use a wooden stick wrapped 10 times
with white PTFE, which is a handy and low-cost alternative of the spectralon
calibration board. The dark frame is obtained by closing the shutter of the
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Fig. 3: Indicative snapshot of the experimental procedure. The left image shows
the arrangement of 7 recyclables (plastic categories PP, PVC, LDPE, OTHERS,
PS, PET, HDPE) using an ordinary RGB representation. The right image shows
the pseudo-colored raw image captured by the hyperspectral camera Specim
FX17e.

camera. In both cases 100 frames are captured and then the 2D mean frame
is calculated by taking, for each spectral band, the mean of the corresponding
values in all 100 frames.

Then, at run time, each line scan capturing raw (R) data is normalized against
the corresponding spectral band values in the dark (D) and the white (W) ref-
erence frames according to the following formula:

Refl. = W=D (1)

which represents the normalised reflectance at the given spectral band.

3.3 Smoothing via Savitzky—Golay Filter

Savitzky-Golay filtering, also called the Digital Smoothing Polynomial (DISPO)
filtering, is a smoothing method used to remove noise from a signal [12]. It is a
finite impulse response filter that is based on a least squares polynomial fit over
a moving window of data. The re-sampling of the fitted polynomial corrects the
original recorded data without distorting the information content of the signal.

The Savitzky-Golay filter is frequently used in absorption spectroscopy, [11][2]
because it places more emphasis on preserving spectral properties than elimi-
nating noise. In the current work, Savitzky-Golay filtering is used with a moving
window of 8 spectral bands and polynomial order 2 to avoid essential information
loss. Indicative results of Savitzky-Golay filtering are shown in Figure 4.

3.4 Standard Normal Variate (SNV)

The Standard Normal Variate (SNV) normalization aims at eliminating the ef-
fect that environmental conditions may have on data collection, and thus to make
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Fig.4: Smoothing via Savitzky—Golay filter to PETE spectrum (raw data with
red and Savitzky—Golay filtered data with blue)

all gathered spectra more comparable. This is achieved by subtracting each spec-
trum by its own mean and dividing it by its own standard deviation. After this
transformation, every spectrum will have 0 mean, and 1 standard deviation.

In detail, the SNV is implemented by the following equation, where y; ; are
the calibrated pixel elements, ¢ represents the pixel, j represents the spectral
bands, y; is the mean value of the spectral signature of the pixel i, and n is the
number of spectral bands:

SNVM _ Yij — Yi (2)

SNV is necessary for the correction of the spectra due to light scattering,
changes in surface roughness and other environment disturbances. As shown in
Figure 5, SNV normalization can crucially facilitate spectrum comparison and
the development of spectrum classifiers.

3.5 Dimensionality Reduction

We use Principal Component Analysis (PCA) to reduce the dimension of the
224 measurements included in each hyperspectral observation, while preserving
the maximum amount of the information encoded in the recorded spectrum. In
short, PCA aims to reduce the size of a dataset through a linear transformation
that approximately describes the original data with fewer dimensions, with the
algorithm focused on minimizing the loss of information.

In this paper PCA is used to project the recordings obtained in 224 spectral
bands onto only the first 4 principal components that can sufficiently preserve
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Fig. 5: Normalization of PETE spectra before and after the SNV transformation.

most of the data’s variation. In that way, the dimention of the hyperspectral
data is significantly reduced (from 224 to 4) enabling all subsequent processing
steps to be implemented more efficiently and in less time.

3.6 Classification

To enable the identification of objects and their categorization to one of the avail-
able material types, we examine four different supervised classification methods,
applied to categorize separately each pixel of the hyperspectral image. The clas-
sification methods considered in the present work are summarized below.
Support Vector Machines (SVM). The objective of the SVM algorithm is to
find a hyperplane in the N-dimensional space (N is the number of input features)
that distinctly classifies the data points. The SVM marks every training data as
belonging to one side of the Hyperplane. Therefore, SVM operates as a binary
classification method. For multi-class classification, the same principle is used
by dividing the multi-class problem into multiple binary problems.

The current work uses the Radial Basis kernel function which is very common

in spectral imaging due to its ability to ignore outliers. The algorithm is applied
with a dynamic “gamma” which controls the effect of samples near the separation
line and a relatively high “penalty” parameter value which enforces the correction
of mis-classified pixels.
Random Forest (RF). Random Forest is another supervised machine learning
method that is used in classification problems. RF builds inference mechanisms
by constructing a multitude of decision trees. During training, the decision tree
grows incrementally using randomly selected subspaces of data to improve deci-
sion accuracy.

The RF approach aggregates the results of the individual decision trees
through a voting mechanism to provide a single output. In that way RF can
effectively tackle the well known over-fitting problem of decision trees. In the
current work we use forests populated with 10 decision trees each one having a
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maximum depth of 60. This configuration seems to balance effectively between
training speed and high classification accuracy.

K-Nearest Neighbors (KNN). This is a relatively simple, instance-based su-
pervised learning algorithm that is very popular in tackling classification prob-
lems. According to the KNN algorithm a new data point is assigned to the most
common class among its nearest neighbors, where k refers to the number of
nearest neighbours to include in the majority voting process.

The KNN algorithm has been extensively used in classification problems due
to its simplicity and ability to work with multi-class problems dealing with both
linear and non-linear data. Still, it is computationally expensive to find the
k nearest neighbours for new samples and this can affect the use of KNN in
hyperspectral imaging applications where the number of pixels (data samples) is
very high. In the current work we have used neighborhoods of & = 3 neighbors.
Multi-layer Perceptron classifier (MLP). The Multi-layer Perceptron is a
well-known feedforward artificial neural network that uses layers of intercon-
nected neurons to transform inputs to targeted values. Each neuron transforms
the outputs of the preceding layer using a non-linear activation function, such
as the sigmoid function or the rectified linear unit (ReLU) function. The func-
tionality of the network is tuned using the so called “back-propagation” gradient
descent optimization algorithm, which aims to adapt neuron parameters and in-
terconnection weights across layers, in the direction that minimizes the output
error in relation to a targeted value. In the present work, we develop an MLP
classifier with 3 layers of neurons consisting respectively of 150, 100, 50 neurons
that use the ReLU function.

3.7 Post-processing

The output of the classifiers is used to construct a 2D image, where each material
type is visualized with a different color. In this image, several outlier pixels ap-
pear as noise which should be cleared out. This is accomplished by implementing
a binary image separately for each examined material type (i.e. different colour).
Then, connected component analysis is performed to find sufficiently large re-
gions that correspond to the examined material. Regions below 1000 pixels are
omitted. Finally, the morphological operations of dilation and erosion are applied
for hole filling and region smoothing. After applying the above steps separately
for each examined material, the obtained images are united back into the com-
posite image that is recolored using the original, material specific color map.

4 Experimental Results

The data acquisition process took place in the industrial material recovery fa-
cility of Heraklion, Crete, Greece, using real recyclables, which were dirty and
deformed. On a daily basis, prior to the recording of data, dark and white ref-
erence images were acquired, which have been used for radiometric calibration
to compensate for environmental variations (see section 3.2).
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The dataset captured is associated with all seven plastics categories consid-
ered in recycling (PET, HDPE, PVC, LDPE, PP, PS, Others) plus the belt
background. Multiple objects for each material type have been used for data
acquisition. As mentioned earlier, all captured images consist of 1000 lines, 640
pixels per line, and 224 spectral bands per pixel. The data samples to be pro-
cessed are collected as individual pixels in the form of a 224-values vector, which
are manually associated to the targeted material type represented as a scalar
with 8 available options (7 types of plastics + background). In particular, the
composition of the dataset is as follows, 6814 pixels for Background, 4507 for
PET, 4752 for HDPE, 3337 for PVC, 4224 for LDPE, 4510 for PP, 3852 for
PS and 2416 for Others. Following the approach proposed in the current work,
all captured pixels are examined one-by-one to be classified into one of the 8
available options.

To minimize execution time, Radiometric Calibration, Spectra Smoothing
and Standard Normal Variate normalization are applied per line in parallel run-
ning threads. Then, PCA implements dimensionality reduction to compress the
initial 224-long vectors to much smaller four-values long vectors that are used
as input to the classifiers.

The input-output pairs are randomly divided into two separate sets to be
used for the training (70% of samples) and the testing (30% of samples) of
the four classifiers discussed above. To facilitate comparisons, all classifiers are
optimized and assessed with the same training and testing dataset.

After training, the classifiers are used to separately classify each pixel of
the test set. The obtained results are summarised in Table 1, which shows the
scores of the algorithms in terms of classification accuracy and the processing
time for the whole test set. MLP and SVM have the highest accuracy, as well as
the lowest execution times. The Random Forest classifier has the worst results
in terms of both the classification accuracy and execution time. Clearly our
results do not favor the applicability of HSI in real time applications, since the
minimum processing time achieved was 3 secs. However, minimizing processing
time was not a priority for the current work and there is likely room for further
improvement (e.g. by adopting GPU processing).

Algorithm|Accuracy|Execution Time
SVM 98.05% 3 sec
RF 93.16% 54 sec
KNN 97.55% 22 sec
MLP 99.50% 7 sec

Table 1: Accuracy of the classifiers on the testing dataset.

Furthermore, we assess the performance of the classifiers in real-world previ-
ously unseen images. The classifiers are again applied pixel-wise, and the output
is reconstructed as a 2D image to facilitate visual inspection. To estimate classi-
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fication accuracy we contrast the result of each classifier with the ground truth
image. The obtained results are visually illustrated in Figure 6. We can easily
see that the pixels of the different objects are mostly successfully categorized,
with the exception of some edges, which are miss-categorized because of the 3D
shape of the objects, which affects light reflectance at the border of the objects.

To improve the classification accuracy, the post-processing steps summarized
in section 3.7 are applied on each one of the images shown in Figure 6. To quan-
tify the improvement accomplished by post-processing, we contrast the accuracy
of the result in relation to the ground-truth, before and after post-processing. We
consider the commonly used Peak Signal-to-Noise Ratio (PSNR), which quan-
tifies the similarity between the targeted and the actually obtained image. The
comparative results are summarised in Table 2. Even if the quantitative com-
parison do not show drastic improvements in terms of accuracy and PSNR, this
is mainly because post-processing is focused on local scale corrections.

Before Post-Processing|After Post-Processing
Accuracy| PSNR  |Accuracy| PSNR
SVM 95.62% 41.39 dB 95.83% | 41.98 dB
RF 95.05% 40.25 dB 95.27% | 40.94 dB
KNN | 95.65% 40.81 dB 95.86% | 41.22 dB
MLP 95.33% 41.12 dB 95.72% | 41.89 dB
Table 2: The pixel-wise classification accuracy and PSNR for the whole image,
“before” and “after” post-processing, in relation to the ground-truth data.

Classifier

Finally, the current work assumes that the recyclables are spread out on the
conveyor belt with minimum overlap, so when two (non-background) materials
touch each other with an edge that is longer than the 1/3 of the perimeter of
the object, they are consolidated into one object with its material determined by
the type of the largest area. This facilitates correct identification and masking
of all objects (due to space limitations this is not visualized, as we preferred to
dedicate the space to the intermediate steps).

5 Conclusions

The current work investigates the applicability of hyperspectral imaging in in-
dustrial application and specifically in the challenging environment of recyclable
material recovery. We compare four well-known classifiers in sorting plastic pack-
ages to the categories officially used in waste recycling. The obtained results
demonstrate the high potential of hyperspectral imaging in the given applica-
tion domain.

Our ongoing work focuses on the integration of the developed technology
with the robotic system already installed at the material recovery facility, which
will enable the full-day assessment of the composite system.
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