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Abstract—Today, waste recycling is supported by intelligent
robots that use machine learning to identify and sort recy-
clables. The development of computer vision applications based
on machine learning relies heavily on large datasets that are
used to train deep neural network models. In recent years,
methods that allow the creation of large training datasets from
a limited initial set of images have been investigated. This
paper describes a method in which segmented images of real
recyclables (polyethylene terephthalate, PETE) are artificially
deformed using mesh transformation to create new instances
of the recyclable objects. The new instances are placed on real
backgrounds to create synthetic images. This process allows the
generation of large artificial datasets used for training neural
networks. We evaluate the usability of these datasets by studying
the extent to which they can improve the performance of trained
models when applied in real and challenging industrial images.
In particular, we consider the main metrics used to evaluate the
performance of classification models, namely Accuracy, Precision
and Recall. The results obtained show that including even small-
scale object deformations in the artificial datasets can slightly
improve the Accuracy and significantly improve the model Recall,
while Precision of the model remains unchanged.

Index Terms—Synthetic waste data, Grid deformation, Deep
Learning, Computer Vision, Material recovery

I. INTRODUCTION

The recovery and recycling of post-consumer packaging
materials is central to the circular economy model that has
become increasingly popular in recent years. The term ther-
moplastics refers to a group of materials that are widely used
in packaging and are suitable for recycling. Due to their me-
chanical and chemical properties, thermoplastics can be melted
and recast many times and at the same time retain all their
usability properties. One of the best thermoplastics in terms of
recyclability and processability is polyethylene terephthalate,
commonly known as PETE or PET. This material is a primary
target for Material Recovery Facilities (MRFs).

The last years, robots guided by advanced computer vision
systems have been installed in MRFs to speed up material
recovery and enhance the processing capacity of such facili-
ties. The real-time detection and categorization of recyclables
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as they are transported on an industrial conveyor belt is a
particularly challenging task for computer vision units.

To date, the dominant approach regards the use of deep
neural networks which are trained to identify and categorize
recyclables. The training of deep neural networks is based on
large datasets consisting of images depicting the recyclable
waste transported on the industrial belt. However, the annota-
tion of the “belt-images” used for training is a difficult and
very time-consuming process that requires many resources to
be devoted to manual image processing.

To overcome the need for extensive manual image anno-
tation, we investigate synthetic data generation methods that
allow the acquisition of large, already annotated datasets. We
focus on implementing an easy-to-use, low-cost method, which
can generate a large number of new synthetic images that
increase variance in the features of the dataset. The use of
the new, enhanced dataset for training deep NNs is expected
to improve the efficiency of the obtained model in comparison
to the one trained with the original limited-size dataset.

The present work focuses on a key challenge for MRFs
that is the categorization and separation of materials coming
in mixed recyclable waste streams. In particular, we focus on
the identification of PETE, a plastic widely used in water
and juice bottles, which currently has one of the highest
prices in the secondary materials market. Due to the latter,
MRFs spend a lot of resources in PETE collection. Our
work aims to automate and improve computer vision based
PETE identification in mixed waste streams (this aims to be
integrated with the robotic PETE picker we have implemented
in previous works [1]–[3] (see the following Youtube-link).

The computer vision module explored in the present study
is based on the well known Mask R-CNN deep neural network
that is trained to identify PETE recyclables. We start with a
dataset containing 1000 industrial images from the conveyor
belt of an MRF, where PETE objects are manually annotated.
For the rest of the paper this is called the “Base” dataset.

Additionally we collect 440 images of segmented PETE
objects which will be used to generate synthetic datasets.
We implement a method that computationally deforms the
segmented and isolated “object-images” to create multiple
slightly different instance of the object after applying random
grid based image distortions. The new, artificial objects-images
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are superimposed on randomly selected belt-images to create
a new dataset. We generate four different synthetic datasets,
consisting of artificial PETE objects developed from varying
degrees of mesh deformation. The synthetic datasets are used
for training Mask R-CNN models, which are further evaluated
on the recognition of unseen PETE objects.

In short, this paper aims to (i) present an easy to develop
grid-deformation approach for generating synthetic recyclable
waste data (ii) contrast the usability of manually annotated and
artificially generated datasets in training Mask R-CNN based
computer vision models for waste sorting, (iii) examine the
extent of deformations that are necessary for having a positive
effect on the machine learning potential of the synthetic
dataset.

The current paper is organized as follows. Section 2 pro-
vides a short review of the synthetic data generation literature.
Then section 3 discusses the proposed method providing
several implementation details. The next section presents the
results obtain after applying the proposed method to create a
PETE identification module. Section 4 provides a discussion
on the obtained results. Finally, the last section provides
conclusions and direction for fruitful future work.

II. LITERATURE REVIEW

In recent years, deep learning has been used to tackle many
real-world problems, including the identification and categori-
sation of recyclable waste [1], [2], [4]. Deep learning assumes
the use of large, well defined datasets to train multi-layer
neural network models. However, to acquire large datasets,
extensive real-world recording is required. This task is not
easy, and will then have to be complemented by laborious
manual work to annotate the recorded data. Overall, data
logging and annotation is currently considered a key hurdle
for machine learning applications [5].

An alternative approach, regards the collection of much
smaller scale data which are then used as a starting point
for creating new, realistic, synthetic data that are included in
the training of the deep neural networks [6], [7]. Following
this approach one can not only save significant time but also
minimize costs related to data collection and annotation [8].

In computer vision applications, it is often easy to record a
high number of images. However after that, it is necessary to
manually process these images to label regions of interest with
pixel-level precision. The latter makes the acquisition of large
well-annotated image datasets particularly challenging. There-
fore, the generation of synthetic image data is particularly
relevant for many computer vision applications [9], [10]. State
of the art approaches rely on Generative Adversarial Networks
[11], Variational Autoencoders [12], Diffusion Models [13],
and other task specific networks. However these approaches
assume again the collection of data for training the generative
models that produce the synthetic images.

In contrast to the above, the current work considers the use
of a straightforward algorithmic method for the generation
of synthetic recyclable waste data. The proposed approach
is particularly low-cost and assumes only a small amount of

Fig. 1: A sample of object-images extracted from industrial
belt-images.

Fig. 2: An exemplar images taken from the belt conveying
waste in the material recovery facility.

annotated data to be available for the generation of synthetic
data sets.

III. METHODOLOGY

As discussed above, the present work considers the ad-
vancement of existing datasets by using available segmented
object-images (see Fig 1) which are artificially deformed to
be superimposed over real-world belt-images that depict the
flow of waste on a conveyor belt in the industrial context of a
MRF (see Fig 2). The goal is to develop a richer, automatically
generated dataset that, when used for training, improves the
generalization of the obtained model, in comparison to the
original dataset.

To achieve this goal, we have developed a two-step process
that first takes object-images to generate multiple, new ran-
domly deformed object-images. Then, it places the new images
on top of belt-images and updates the relevant annotation file
to generate an advanced synthetic dataset. These two steps are
described in the following sections.

It is important for our work to develop a PETE identification
module that is applicable in real industrial environments. The
recording of data is performed in the material recovery facility
of Heraklion, Crete, Greece.

A dark room is implemented above the belt conveying waste
to minimize the effect of external lighting. Inside the dark
room we install a 2MP RGB camera and three light bars
providing uniform ambient light on the waste. We use this
installation to record one image every second, for several



Fig. 3: An initial object-image (left) undergo 5, 10, 15 and 20
distortions (right).

hours. Following this approach we have been able to obtain
more than 10K belt-images recorded in a real and particularly
difficult industrial context. On average, each image contains
3.2 PETE objects.

We use 1000 randomly selected images to be manually
annotated using the online tool: VGG Image Annotator [14].
This set of images composes the so called “Base” dataset. Ad-
ditionally, a json file is created, to provide a meta-description
of the content of the Base dataset.

A. Random deformation of segmented object-images

To develop a large number of synthetic new object-images
using a limited set of initial object-images we use grid
deformation that can easily and effectively generate geometric
transformations on images. This is implemented using the
inverse distance weighting interpolation [15], assuming that
the displacement of a grid point is propagated to the interior of
only the surrounding grid. The weighting function that controls
the appearance within the grid is directly related to the distance
between the moved interior point and boundary points.

Totally, 440 different manually isolated object-images are
used for data generation. The original PETE object images are
considered as rigid bodies and under the stresses that undergo
in the real world, the deformation that is created at one point
will propagate only to the neighbour points. It is assumed,
there are two kinds of deformations: folds and curves.

We create a 2D mesh with dimensions m x n, which
is applied on every given object-image of dimensions m x
n. A random node of that grid is selected to move by a
random generated vector. The magnitude of that vector, which
describes the extend of that movement, takes a number in the
range between 10 and 30 pixels. The orientation of the vector
is within 0 and 360 degrees. Then, accordingly to an inverse
distance weighting interpolation, every other node of the mesh
is moved, simulating a rigid body distortion.

The number of times that the above procedure takes place is
denoted as N and defines the shape of final deformed mesh that
will be applied to a real object-image. We interpolate it linearly

at pixel level. Essentially, every iteration of that process,
inserts a fold or a curve to the object-image, simulating the
physical distortion that a waste object may undergo.

B. Synthetic Dataset Generation

Synthetic datasets consist of artificial belt-images, that are
created by superimposing the deformed objects-images on top
of industrial, originally PETE-free, belt-images.

We use 440 real PETE object-images which are randomly
deformed ten times to come up with 4400 new artificial object-
images. These are placed over 500 real belt-images used as
backgrounds (see Fig 2). On each background image, we
superimpose a random number (between 1 and 5) of artificial
object-images to generate a new synthetic belt-image (see
Fig 4). The synthetic belt-image is annotated automatically,
by entering the border line of the added objects in the .json
file describing the content of the dataset.

Following the above, we generate four synthetic datasets
each one generated by using a different set of deformed
object-images. In particular, the 5Def synthetic dataset is
implemented by using 5 deformation steps, the 10Def synthetic
dataset is implemented by using 10 deformation steps, the
15Def synthetic dataset is implemented by using 15 de-
formation steps) and finally, the 20Def synthetic dataset is
implemented by using 20 deformation steps.

Fig. 4: A synthetic image generated by superimposing 5 PETE
bottles on top of the background image shown in Fig 2.

IV. RESULTS

To evaluate the synthetic dataset generation procedure we
examine the ability of the generated datasets to enhance the
learning capabilities of the deep convolutional neural network
Mask R-CNN.

In particular, we examine the quality of Mask R-CNN
training when using the base dataset, and the 5Def, 10Def,
15Def, 20Def synthetic datasets. Furthermore, the synthetic
data generation method is contrasted to the standard aug-
mentation approach that is frequently applied on deep neural
network training datasets and includes standard random affine,
scale and rotation transformations, hue, saturation and colour
modifications and crop augmentation.



A. Model Training

As discussed in previous works [2] waste identification in
an industrial context assumes the solution of the problem
known as “instance segmentation”. This is necessary because
the model needs to identify and categorize multiple, potentially
overlapping objects that are carried over the industrial belt.
The well-known Mask Regional CNN (Mask R-CNN) [16]
has been widely used in the past to successfully address real
world instance segmentation tasks and is therefore adopted in
the present work to develop the PETE identification module.

It is noted that in all experiments we use the same training
parameters (in fact they have been specified through trial
and error procedure, to improve the performance of the base
model). The relevant parameters are listed bellow.

• backbone network: Resnet101
• image resize mode: 512 x 512 px.
• batch size: 12 RGB images
• learning rate : 0.002
• number of epochs : 100
• steps per epoch: 500 (for datasets of 10000 images) and

150 (for base dataset of 1000 images)

Moreover, Mask R-CNN uses a multi-objective loss function
which is calculated as the weighted sum of different losses
(Rpn class loss: presence or absence of objects, Rpn bbox
loss: area bounding box, Mrcnn class loss: categorization of
the object, Mrcnn bbox loss: object bounding box, Mrcnn mask
loss: pixel-level object localization). It is therefore important
to specify the weights of the individual losses in estimating the
global loss values. For computer automated solutions applied
to the recovery of recyclable materials, it is important that (i)
the objects are identified, (ii) the objects are categorized in
the correct class to avoid mixing material types and (iii) the
boundaries between objects are correctly specified to facilitate
correct estimation of the objects’ centroid.

Therefore during Mask R-CNN training, we provide higher
weights to the partial loss functions addressing the above
issues. Specifically, the weights of the individual criteria used
for training the Mask R-CNN are set as follows:

• rpn class loss: 3
• rpn bbox loss: 1
• mrcnn class loss: 3
• mrcnn bbox loss: 1
• mrcnn mask loss: 4

The above mentioned training parameters have been used
in all experiments discussed in the present work.

B. Testing

We train six different Mask R-CNN models using five
different datasets. The first model is trained using the base
dataset. The second model is trained using the same base
dataset, but this time with the random image data augmentation
activated. The rest four models are trained using the 5Def,
10Def, 15Def, 20Def synthetic datasets, without any image
augmentation during model training.

Fig. 5: An example of model prediction on a first time seen
image, used for testing.

To contrast the performance of the models we use a set
of 200 real images, unseen during training. To facilitate
evaluation, we have manually specified the groundtruth for
all testing images. We use the six trained models mentioned
above, to identify PETE objects in the testing images (see
Figue 5). After testing each model we create the corresponding
confusion matrix, by which we calculate the values of the
fundamental metrics of the Mask R-CNN classifier at pixel
level, namely model Accuracy, Precision and Recall.

Accuracy is defined as the percentage of overall correct
classified pixels that a model is able to predict. Due to the
imbalance of data, which means that PETE objects occupy
substantially less space than prevalent background, we also
calculate the so called Balanced Accuracy which considers the
fact that background appears much more that PETE. Precision
describes the percentage of correct predictions for one class
(for PET, in current occasion) relative to all predictions. Recall
refers to the percentage of actual PETE pixels that the model
is capable of identifying.

According to the PETE identification results summarized in
Table I, the models trained with the synthetic data developed
with a predefined number of deformation iterations outperform
the base model. In particular, the accuracy of the Base model
is lower than the rest. The augmentation of the Base dataset
images improves model accuracy. However further improve-
ment is achieved when the synthetic images are used for
training instead of the original dataset. The difference in model
performance is further revealed after considering the balanced
accuracy of model predictions.

According to Table I, the precision of all models have
similar values. However, the models trained with synthetic
data have higher Recall ability, which means that these models
miss less PETE objects depicted in the test images. The
model trained with the data containing the highest extent of
deformations (i.e. Def20) exhibit the highest Recall ability.

Elaborating further on Recall results, we note that the aug-
mentation of the Base dataset has also improved performance
compared to the case of using the plain Base dataset. Still,
there is further improvement when the synthetic datasets with



Balanced
Training Dataset Accuracy Accuracy Precision Recall

Base 97.34 % 86.21 % 90.71 % 72.65 %
Base + Augmentation 97.88 % 88.70 % 91.67 % 77.87 %

Def5 98.27 % 90.41 % 90.17 % 81.27 %
Def10 98.18 % 90.60 % 90.22 % 81.73 %
Def15 98.25 % 90.51 % 91.75 % 81.43 %
Def20 98.23 % 91.12 % 90.06 % 83.67 %

TABLE I: The performance of the Mask R-CNN models
trained with different datasets.

Mean Jaccard
Training Dataset coefficient

Base 70.61 %
Base + Augmentation 74.16 %

Def5 77.61 %
Def10 77.31 %
Def15 77.85 %
Def20 78.35 %

TABLE II: The effect of the number of deformation iterations
on Mask R-CNN model performance.

artificially deformed PETE objects is used for training. We
believe this is due to the fact that the image augmentation
techniques (e.g. saturation) are applied universally to the
whole extent of an image, while in contrast the generation
of synthetic data based on object deformations has a local
effect trying to provide more instance of how PETE objects
may look-like. It is necessary to note here that we have run
training sessions with the synthetic datasets and the image
augmentation activated, which surprisingly have not improved
the performance of the generated models any further.

Complementary to the above, we visually inspect the accu-
racy of the “masked” PETE areas inferred by the individual
models. This is illustrated in Figure 6, which shows the
performance of the model trained with the base dataset and the
ones trained with synthetic data. The accuracy of the borders of
the identified objects are clearly more accurate in the images
that correspond to 5Def and 10Def training dataset, which
correspond to the N=5 and N=10 object-image deformations.

Besides visually inspecting the difference between the in-
ferred object area and the ground-truth, we quantify their simi-
larity, which provides an additional aggregated and comparable
measure of the performance of each Mask R-CNN model.
To this end, we consider Jaccard coefficient that contrasts the
inferred against the ground-truth region using the ratio of the
intersection over the union of the two regions. The averages of
the Jaccard coefficient measuring the similarity of the actual
and predicted regions over 200 test images are summarized in
Table II. According to these results, the models trained with
the synthetic datasets outperform the base model.

Overall, the results summarized in Tables I and II show that
the synthetic datasets automatically created using artificially
deformed object-images can lead to better models compared
to the use of regular-size dataset annotated by humans (after
many demanding work hours). Interestingly, the use of a
large number of artificially generated data outperforms the
model performance even when random image augmentation

is adopted during the training of the model.

V. DISCUSSION

According to the results summarized in the previous section,
there is a significant improvement in the performance of the
Mask R-CNN model when it is trained using synthetic datasets
generated by the elastic deformation of images to achieve the
creation of new visual instances of the target objects.

The use of synthetic data slightly improves the Accuracy of
the trained models, while their Precision remains at the same
level. What significantly improves is the Recall ability of the
models. In particular, the Mask R-CNN models trained with
the use of synthetic data tend to achieve much higher recall
rates, since their ability to identify PETE objects in real data
is skewer than the base model’s.

This improvement is observed by the use of all the synthetic
datasets created in the present work for Mask R-CNN training,
regardless of the extent of object deformations. To further
assess the role of object-image deformations, we have also
generated a new dataset by simply copying and pasting object-
images but without any kind of deformation, on top of the
background images. The use of this dataset for training has
given very similar results to the Base dataset. Therefore,
we conclude that the deformation of object-images are the
main reason for improving the performance of Mask R-CNN
models.

VI. CONCLUSIONS

The current work investigates the usability of synthetic
datasets in training Mask R-CNN models. The datasets are
created by the random, artificial deformation of object-images
which are placed on top of background images to create large
number of automatically annotated images.

The use of deformed object-images is shown to improve
the overall performance of the trained models. In particular,
training with synthetic data results into slight improvement
in model’s Accuracy, same performance in terms of Precision
and significant improvement in terms of the Recall abilities of
the trained model.

The results of the present work will provide the basis for
the development of more synthetic datasets that will concern
other recyclable materials, such as aluminum packaging and
HDPE plastic packaging. We aim at the generation of extended
multi-material datasets which will allow the training of Mask
R-CNN models that will recognise multiple high-value recy-
clables in challenging conditions. In addition, we are interested
in developing recursive pipelines that use the images of objects
correctly identified by the current solution to generate a new
improved dataset, which is used to develop a better trained
model. The improved model can be further applied to new
images to identify new objects that can again be incorporated
into the dataset and so on.

Moreover, our ongoing work is focused on integrating the
Mask R-CNN based recyclable detection and categorization
modules with the robotic systems we have been developing in
recent years for sorting recyclables in high demand industrial
conditions.



Base 5Def 10Def

Base+augmentation 15Def 20Def

Fig. 6: Indicative identification of PETE bottles by the models trained with the different datasets considered in the current
work. All images are zoomed to facilitate visual inspection. In all images model prediction polygon is shown in orange and
groundtruth polygon is shown in blue.
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