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Abstract—In contemporary waste recycling, the assistance of
autonomous robotic systems, equipped with machine learning
capabilities, has become crucial for the identification and sort-
ing of recyclable materials. The evolution of computer vision
applications, reliant on machine learning, heavily hinges on
extensive datasets employed for training intricate deep neural
network models. Recently several works from various fields have
explored techniques that facilitate the generation of big synthetic
datasets starting from an initially limited set of images. This
paper proposes a novel approach for generating synthetic waste
images, which involves two main steps. The first regards the use
of a neural network to implement a “critic” that can evaluate
how realistic, synthetic images of recyclable objects may be. The
second involves applying multiple random elastic deformations
to images of individual recyclable objects to generate a large
number of new appearances of the given objects. The critic
evaluates the generated images, gauging their realism through
a confidence score. We employ a rigorous confidence threshold
to identify synthetic images with a notably realistic appearance.
These individual object images are then utilized to craft com-
posite synthetic images depicting multiple recyclable objects on
a conveyor belt transporting recyclable waste in an industrial
setting. The above summarized process facilitates the creation of
expansive artificial datasets crucial for training neural networks.
The efficacy of these datasets is assessed by examining their
impact on the performance of trained detection models when
applied to previously unseen and challenging industrial images.
The obtained results show that the use of the synthetic datasets
leads to better classification models in terms of both precision
and accuracy, motivating more research in the field of artificially
generated datasets.

Index Terms—Synthetic Images, Generator, Discriminator,
Waste Categorization.

I. INTRODUCTION

Plastics are everywhere, yet a significant portion is utilized

only once before being discarded, leading to environmental

pollution and the loss of a valuable resource for the economy.

According to Organisation for Economic Co-operation and

Development estimates, merely 9% of the value of plastic

packaging material remains within the economic cycle, with

the majority being dumped to a landfill after a brief first-use.

The recovery and recycling of packaging materials from

end consumers play a pivotal role in the growing popularity

of the circular economy model. Thermoplastics, a category
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widely employed in packaging, are suitable for recycling due

to their ability to be melted and reshaped multiple times

while retaining their initial properties. Among thermoplastics,

polyethylene terephthalate (PETE or PET) stands out as one

of the most recyclable and most-used material in packaging

applications, making it a primary focus for Material Recovery

Facilities (MRFs).

In recent years, many MRFs have taken specific measures

to enhance their productivity. This aims to not only mitigate

environmental pollution but also boost profits by selling recov-

ered plastics in the secondary market. To accomplish this goal,

along with human resources and manual labour, MRFs have

incorporated robotic arms equipped with advanced computer

vision systems to conduct material recovery and boost pro-

cessing capabilities. Detecting and categorizing recyclables in

real-time as they traverse an industrial conveyor belt presents

a considerable challenge for computer vision units, especially

due to the high volume of congested material flow, and the

fluctuations of light that may occur among the light source

and the transparent or white surfaces of recyclables.

The prevailing strategy involves deploying deep neural

networks trained to identify and categorize recyclables using

extensive datasets comprising of images depicting waste on

the conveyor belt. However, annotating these ”belt-images” for

training is a laborious and time-intensive process, demanding

substantial manual image processing resources.

To address the labor-intensive image annotation process,

we explore synthetic data generation methods, enabling the

creation of large, automatically annotated datasets. In partic-

ular, we start by using single-object images that have been

segmented from original belt-image through manual annota-

tion (Figure 1). The method proposed in the current work

is then utilized to generate multiple new/synthetic images of

the initial object. These synthetic images can subsequently

be overlaid on other belt-images, resulting in the creation of

a sufficiently diverse dataset. Our focus is on implementing

an easy-to-use, cost-effective approach capable of generating

numerous synthetic images that introduce variability to the

dataset features. Utilizing this augmented dataset for training

deep neural networks is anticipated to enhance the efficiency of

the resulting model compared to one trained with the original,

limited-size dataset.

1019

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00184



(a) A belt-image. (b) A single
PETE

object-image.

Fig. 1: An example of a belt-image taken in the MRF (left)

and a segmented PETE object-image (right).

The present work adopts the generator-discriminator ap-

proach to develop new, realistic, artificial representations of

recyclable objects. In short it consists of two primary steps,

leveraging neural networks to enhance the realism of recy-

clable object representations. The first step involves the gener-

ation of new, artificial representations of recyclable objects by

using random elastic deformations applied to individual object

images to significantly diversify their appearances. At the

second step, a neural network is trained to act as a critic that

evaluates the generated images, assigning confidence scores to

gauge their realism.

After setting a threshold value for confidence score, the

chosen realistic individual object images are combined to craft

composite synthetic belt-images. These composite images sim-

ulate a conveyor belt scenario in an industrial setting, where

recyclable waste is transported for processing. The aim is to

generate datasets that accurately represent the complexities

of a real-world recycling environment. By utilizing realistic

object images, our approach ensures that the resulting synthetic

images maintain authenticity and mimic the challenges posed

by the dynamic industrial setting of a MRF. Moreover, the

current study explores the effect of the threshold that is set to

the confidence score of the assessed artificial object images

that are utilized in synthetic datasets, on the efficiency of

resultant detecting models.

II. LITERATURE REVIEW

The recent accomplishments in generative artificial intelli-

gence have redirected some focus from data collection to data

generation. Generative AI models can produce text, images,

or other media by assimilating the patterns and structure of

their input training data and subsequently generating new data

with similar characteristics.

Generative Adversarial Networks (GANs) are a particularly

popular approach for generating synthetic images [1]. At the

core of GANs lies a generative model and a discriminative

model that are tuned simultaneously through competitive train-

ing. The generative model tries to generate data samples that

resemble real data, while the discriminative model aims to dis-

tinguish between real and generated samples. The adversarial

nature of training fosters a competitive dynamic, leading to

the refinement of both models over time.

The original GAN architecture has undergone numerous

enhancements and variations to address challenges and im-

prove performance. Notable architectures include Deep Convo-

lutional GANs (DCGANs) [2], which introduced convolutional

layers for image generation, and Wasserstein GANs (WGANs)

[3], which modified the training objective to mitigate mode

collapse and improve stability.

Another popular approach is generative Diffusion Models

which learn intricate patterns and structures from input data,

allowing them to generate new data with characteristics akin

to the original [4]. Typically, Diffusion Models are used to

transform noise into data through an iterative diffusion process.

A third alternative is Variational Autoencoders (VAEs) which

are able to generate new data by adopting a probabilistic

approach [5]. In short, they consist of an encoder that maps

input data to a probabilistic latent space, and a decoder that

generates data from samples in this space.

Despite their successes, AI generative approaches face chal-

lenges such as mode collapse, training instability, difficult

and laborious process of training neural networks, demand of

high computational resources and finally the creation of biased

outputs when the training data are limited.

The current work borrows from GANs the idea of im-

plementing a discriminator module to assess the realism of

artificial images. This approach offers a systematic mechanism

to filter out images that lack realism and retain those closely

resembling real waste objects.

As an alternative to generative AI methods, one may con-

sider object deformation techniques to generate new waste-

object instances. Ideally, geometric deformation can be defined

in the 3D domain, which is reflected as a perturbation on the

surface grid. The use of the grid provides the means to map

perturbation into the whole solution domain. This is typically

implemented by the mesh deformation approach. For mesh

deformation, the interpolation and the spring analogy scheme

[6], are widely used. However, besides being computationally

expensive, 3d mesh deformation may frequently result in grid

crossing and negative volumes. Moreover, 3D mesh deforma-

tion is particularly challenging to apply on waste images where

the surface of the objects is unknown and their appearance can

be significantly altered by dirt.

Turning to the 2D domain, image deformation techniques

such as guided warping have proven to be valuable tools

for the production of visual effects [7]. Most image warping

techniques rely on the idea of treating the image domain as

an elastic membrane, capable of deformation within specified

constraints while maintaining a shape that is both natural and

regular [8]. Grid based image deformation has been applied

widely in several domains such as elastic image registration

[9] and recently for data augmentation [10], [11].

Similarly, in the current work grid deformation is applied on

single waste-object images to generate new appearances of the

given objects, which are then used to create multiple synthetic
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belt-images that are employed to train a waste identification

and categorization Mask R-CNN model.

III. METHODOLOGY

As mentioned above, the approach proposed in the cur-

rent work is inspired from Generative Adversarial Networks

(GANs), that use(i) a generator neural network trained to

generate random synthetic images and (ii) a discriminator

neural network trained to distinguish between real and syn-

thetic images, effectively discerning authentic from fabricated

images. These two models engage in a competitive process,

progressively enhancing their performance over time. When

training GANs people face several issues with one of them

being the time training takes to get a fully functional module

[12]. In particular, the training of the GAN models requires a

lot of resources that increase exponentially with the size of the

processed images [13]. Given that most resources are devoted

for generator training, to minimize resource consumption, we

propose to substitute the training of the generator with a much

simpler algorithmic procedure that employs random geometric

transformations on the original image to randomly create new

instances of the given object. The much lighter computational

procedure that regards the training of the discriminator is

preserved in the present work, similar to the GAN architecture.

The proposed approach is graphically illustrated in Fig 2 and

is described in more detail bellow.

A. Geometric deformation algorithm

We start by presenting the geometric deformation procedure

applied on a limited collection of initial real object-images to

generate a set of new synthetic object-images. This technique

aims at applying geometric transformations to images by ap-

plying a grid of movable vertices over the image and utilizing

inverse distance weighting interpolation [14] to make pixel-

wise color adjustments. It assumes that the displacement of a

grid point influences only the neighboring grid points within its

vicinity. A weighting function governs the appearance within

the grid, which is directly tied to the distance between the

moved interior point and boundary points.

A randomly selected node from the grid is moved by a

vector generated at random. The magnitude of this vector,

indicating the extent of the movement, falls within the range

of 10 to 30 pixels, and its orientation ranges from 0 to 360

degrees. Subsequently, following an inverse distance weighting

interpolation, every other node of the mesh is moved, simu-

lating a rigid body distortion.

The above procedure is applied multiple times to generate

multiple local distortions on the original object image. The

number of distortions is denoted with N and the sequence

of distortions defines the shape of the newly obtained object

image. Essentially, each iteration of this process introduces a

fold or a curve to the object image, mimicking the physical

distortion that a waste object may experience. Because of the

stochastic way of applying these distortions, different runs

of the algorithm over the same initial real image produce a

different synthetic image as an outcome.

Fig. 2: Graphical representation of the architecture proposed

in the current work.

B. Discriminator model

Additionally, a neural network is created, which aims at

distinguishing between real and synthetic object-images. For

that purpose, as described above, the proposed approach

focuses on the development of a Discriminator model. That

neural network receives as input an image, and returns a value

between [0, 1], which represents the possibility of that image

be real (values close to zero correspond to non-realistic images

while values close to 1 correspond to highly realistic images).

This value represents the “confidence” of the discriminator

that a given image looks like a real waste object or not.

It is noted that the discriminator model is trained to

deal with the unique characteristics of PETE bottles waste,

which include (i) the original shape of PETE bottles and

(ii) the expected distortions on bottle surface due to their

compression in waste trucks. In other words, the training of

the discriminator is geared towards enabling it to recognize

not just generic non-realistic anomalies but also the PETE

specific non-realistic anomalies that may have appeared due

to the random geometric deformations (previous section). This

aims to ensure that that, following the Discriminator filtering

process, the deformations, folds, and curves introduced in the

generated synthetic images closely resemble the real-world

stresses that PETE bottles could experience.

The training of the Discriminator model, that is depicted in

Fig 2, is performed by using a dataset comprising of 440 real

PETE bottle images. The architecture for the Discriminator

neural network consists of an input layer, three hidden layers

of 1024, 512 and 256 neurons respectively with ReLU acti-

vation function and one output layer with sigmoid activation

function, all fully connected. The images that are fed into that

neural network must be RGB (3 channels) and resized to 256

x 256 pixels. Therefore, the input to the discriminator consists

of an array of 3 x 256 x 256 neurons, with the corresponding

values determined by normalizing RGB intensities from the

range [0, 255] to the [-1, 1] range.

In each training step a batch of 8 randomly selected images

is utilized, where 4 of them are real and the other 4 come

from the grid-deformation algorithm that was described above.

During training, the Discriminator is repeatedly adjusted in
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Fig. 3: The Discriminator accuracy evolution during training.

the direction that minimizes the sum of squared differences

between predicted and actual realism of the examined images.

The rest of the training procedure is similar to the one

followed in the training of Discriminator neural network of a

typical GAN model. The main parameter values of the training

process are: learning rate: 0.0002, learning momentum: 0.5,

number of epochs: 5000, Batch size: 8 images.

As shown in Fig 3, even after 500 epochs, the Discriminator

develops a broadly meaningful performance within the context

of identifying realistic PETE appearance. After 4000 epochs

the Discriminator gradually converges to a configuration that

can successfully assess the realism of the examined images

with approximately 98% accuracy.

C. Generation and evaluation of synthetic object-images

The next step entails the generation of large number of

synthetic object-images, and the evaluation of their realism

by using the Discriminator. For this purpose, 440 real object-

images of PETE bottles are employed. In each real image, a

distinct set of random grid deformations is applied 2500 times

(see the procedure described in section III-A), resulting in a

total of 1.1 million synthetic object-images. The Discrimina-

tor evaluates all these synthetic images and assigns them a

confidence score (see Fig 4), which indicates their realism.

The chart illustrated in Fig 5, shows the distribution of

the synthetic object-images’ confidence score on logarithmic

scale. Besides the prevalence of synthetic images being cat-

egorized as non-realistic (this was expected because of the

random geometric deformations applied on original images),

the method proposed has also the capability to generate a

substantial quantity of new synthetic images that exhibit a high

degree of realism. At the same time, by applying a threshold

to the score of realism provided by the Discriminator, we can

readily obtain distinct sets of images with varying degrees of

deviation from the original data. More specifically, for the rest

of the paper, we denote with Dx the set of synthetic object-

images for which the Discriminator score is above x.

What is of interest in the present work, is to study the

“value” of the newly generated object-images in improving

the training of neural network models aiming at identifying

PETE objects in challenging multi-waste industrial images.

This is examined in the following paragraphs.

Dataset ID Description of dataset
1 1000 real belt-images (Base dataset)
2 1000 real belt-images +

4000 synthetic belt-images using D0

3 1000 real belt-images +
4000 synthetic belt-images using D0.85

4 1000 real belt-images +
4000 synthetic belt-images using D0.95

TABLE I: Description of datasets according to their training

set differentiation.

D. Base and synthetic datasets of belt-images

To train a deep neural network model that recognizew

PETE objects in images where many different types of waste

are depicted, it is important to have a large dataset of belt-

images in which the existing PETE objects have been clearly

annotated. As discussed bellow, the current work considers

the training of Mask R-CNN models which have proven very

that have been shown to be very effective efficient in waste

identification and categorization [15].

The synthetic object-images discussed in the previous sec-

tion, are used to compile complex, automatically annotated

belt-images with several PETE objects appearing on them. To

this end, a random number of synthetic object-images are su-

perimposed in random positions and orientations on top of real

belt-images, thus forming a sufficiently large number of new,

synthetic belt-images. To be able to draw conclusions about the

effect of synthetic data on the training of the PETE recognition

model it is necessary to formalize the experimental procedure.

In particular, we make a comparative study that uses different

datasets in training a PETE identification module.

As a reference dataset, a set of 1000 real belt-images is

selected. Furthermore, to examine the effect of synthetic im-

ages, the reference dataset is enriched with 4000 synthetic belt-

images, which are created using the object-images included

in D0, D0.85, D0.95, thus forming three additional synthetic

datasets. This is summarised in Table I. It is mentioned that

D0 corresponds to absence of the procedure of Discriminator

evaluation, as any object-image that is generated by grid-

deformation algorithm can potentially be used in the newly

created belt-images. The datasets are evaluated for their ability

to train PETE detection Mask R-CNNn models which are then

applied to real, previously unseen, belt-images.

IV. RESULTS

Identifying waste in an industrial setting involves address-

ing the problem known as ”instance segmentation.” This is

essential because the model must recognize and categorize

multiple, potentially overlapping objects transported on the

industrial belt. The established Mask Regional CNN (Mask

R-CNN) that integrates a region-based convolutional neural

network (R-CNN) with a mask prediction branch enabling

it to provide pixel-level segmentation, has proven ability to

effectively tackle waste identification and categorization tasks

[15]. Hence, it is adopted in the current study to build the

PETE identification module.
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Initial image Confidence=0.34 Confidence=0.54 Confidence=0.86 Confidence=0.96

Fig. 4: Examples of confidence value for various single object images.

Fig. 5: The distribution of confidence scores, using a logarith-

mic scale for the images counting.

In this work, matterport package was used for the implemen-

tation of Mask R-CNN models [16]. All training parameters

for the models remained consistent across all datasets con-

sidered in this study. Furthermore, the models were trained

with the built-in data augmentation functionality enabled. For

each dataset five different Mask R-CNN models have been

trained each initialized with a different random seed. Then, the

average performance of these five models is estimated based

on a set of two hundred real, previously unseen images.

To assess the effectiveness of the generated solutions, we

employ widely-used metrics in object detection models, specif-

ically, Accuracy, Precision, and Recall rates. Accuracy is the

measure of the percentage of correctly classified pixels overall

that a model can predict. Considering the data imbalance

where PETE objects occupy significantly less space than the

prevalent background, we also compute the Balanced Accu-

racy, taking into account the more frequent appearance of the

background. Furthermore, owing to the data imbalance, where

PETE objects occupy significantly less space compared to the

predominant background, we compute the Balanced Accuracy.

This metric takes into account the disparity in frequency

between background and PETE occurrences. Precision denotes

the percentage of accurate predictions for a specific class (in

this case, PETE) relative to all predictions. Recall represents

the percentage of actual PETE pixels that the model can

successfully identify.

The obtained results are summarized in Table II while

Balanced
Dataset ID Accuracy Accuracy Precision Recall

1 94.69 % 76.57 % 67.68 % 55.14 %
2 97.88 % 80.70 % 74.52 % 57.24 %
3 98.27 % 87.41 % 83.23 % 60.17 %
4 95.38 % 78.62 % 80.22 % 58.73 %

TABLE II: The pixel-level performance of the Mask R-CNN

models trained with different datasets.

indicative results are shown in Figure 6. In all training cases,

the use of synthetic data (datasets 2, 3, and 4) consistently out-

perform the use of only the base dataset. This improvement is

evident in both Precision (with an increase ranging from 6.5%

to 12.5%) and Recall rates (with an increase ranging from

2% to 5%). In the case of Accuracy, the improvement is less.

Still, the global picture reveals the ability of synthetic datasets

to effectively generalize the characteristics of deformed waste

objects, thereby contributing to the training of more effective

Mask R-CNN based instance segmentation models.

Moreover, a comparison between dataset 2 and datasets 3

and 4 helps assess the actual effectiveness of the proposed

methodology, in particular the effect of random geometric

deformations and the role of the Discriminator. It is reminded

that the synthetic dataset 2, lacks the evaluation step for

inserted object-images and thus does not leverage the effect

of the Discriminator. Even in that case we observe a clear

improvement in the performance of the trained models. By

considering how the other two datasets (3 and 4) have also

affected the training of the model, the comparison reveals that

the inclusion of “selected” object images, with realism verified

by the Discriminator results in better performing models,

showcasing an average increase of 7% and 2% in precision

and recall rates, respectively in relation to dataset 2.

Focusing particularly on the dataset 3 (generated with

object-images achieving realism score higher than 0.85) and

contrasting it to the dataset 4 (generated with object-images

achieving realism score higher than 0.95) we observe that

dataset 3 leads to higher Mask R-CNN model performance, for

all considered metrics. Intuitively, this implies that a less strin-

gent selection of artificially generated object-images allows

the trained models to more effectively generalize the expected

features of PETE bottles, resulting in improved performance

in challenging real-world images.

V. CONCLUSIONS AND FUTURE WORK

The present study introduces a straightforward, easy to

use methodology for generating valuable datasets of synthetic
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Dataset 1 model (Base) Dataset 2 model

Dataset 3 model Dataset 4 model

Fig. 6: Indicative identification of PETE bottles by the models trained with the different datasets considered in the present

work. In all images model prediction polygon is shown in orange and groundtruth polygon is shown in blue.

images, particularly relevant to applications involving object

identification and categorization.

The method involves manually segmenting the objects of

interest in existing images, randomly applying geometric de-

formations to create new synthetic objects, training a neural

network Discriminator to evaluate the realism of the generated

objects, and finally using multiple synthetic objects to create

additional images that enrich the original dataset. The obtained

results suggest that the synthetic datasets produced through

the proposed approach can significantly improve the training

of instance segmentation, in our case Mask R-CNN models,

outperforming those relying solely on the original data.

Our ongoing and future work focuses on the application of

the proposed method to other types of recyclable materials

such as aluminum and high density polyethylene (HDPE).

Additionally, we are keen on evaluating its applicability in

entirely different domains, such as food inspection.
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